
1

www.isc2.org

Introduction

In this day and age when software is rife with vulnerabilities,
as is evident in full disclosure lists and hacking incidence reports,
security in the software lifecycle can simply no longer remain
on the sidelines. Software security breaches and data loss have
resulted in devastating fines, irreparable reputation damage, and in
some cases have jeopardized the very survival of many companies
and organizations. And while writing secure code and passing
hack-resilient tests are important elements of software assurance,
they represent only a starting point, a subset of the holistic
umbrella term “Software Assurance”.

Frost & Sullivan research from two (ISC)2® studies has found
there are two primary conditions that create information security
vulnerabilities in enterprise software applications:

 1. Inexperienced developers writing code

 2. Influencers not understanding information security
issues as they pertain to the Software Development
Life Cycle (SDLC)

Influencers naturally have differing points of view and priorities.
But individual priorities must give way to the overall success
of the development of secure software. Budgets and design
specifications must be developed with security in mind. Poor
design invariably results in a product with inherent security flaws,
and budget limitations lead to overruns and higher maintenance
and enhancement costs.

Prior to the software’s market release, influencers have differing
levels of power over the Software Development Life Cycle
(SDLC), from the conceptual stage to the development and
testing stages, and everything in between. To be “truly secure,”
one must address the elements of software security through the
entire lifecycle, from initiation to sunset, or, in other words, from
envisioning and planning to disposal.

(ISC)2’s whitepaper, The Need for Secure Software addresses the
“Why” of designing, developing, and deploying secure software.
It delves into the drivers of software assurance and the
importance of data security. It covers the policy, process, and
people aspects of software assurance. This paper will address the
“What” of secure software. What does it take to design, develop,
and deploy secure software?

What is Secure Software?

First and foremost, it’s important to understand that secure
software does not mean zero-defect software or software that is
100% hack-resilient with no vulnerabilities. While from a security
standpoint this would be an ideal situation for all software, it is
purely utopian. Such software does not exist. All software is prone
to attack unless it is in a non-operational inaccessible state.

Secure software is software designed with security in mind,
developed with security controls, and deployed in a secure
state. While it might have the potential of being breached, the
repercussions of a breach are greatly diminished. Secure design
and architecture, secure development with security controls built
in by default, and secure deployment or release, all work together
to minimize the impact of a software vulnerability that gets
exploited. In other words, secure software is about mitigating
or controlling the risk of software vulnerabilities.

A Kaleidoscope of Perspectives

Peering out into the landscape of software development, it’s
clear that there is no magic silver bullet in designing, developing,
and deploying secure software. In fact, with the advent of new
technologies and the increasing rate at which technology is changing,
software developed and deployed today in a secure state may
no longer be secure in the future. And merely fixing software
vulnerabilities with a patch-and-release cycle, as is predominantly
the case today, does little to get to the root of the problem.

Software Assurance:
A Kaleidoscope of Perspectives

Mano Paul, CSSLP, CISSP, AMBCI, MCAD, MCSD, Network+, ECSA

2

www.isc2.org

Various actors, factors, and perspectives need to be considered.
Software development should be viewed as a set of patterns
that are reflected in a kaleidoscope depending on the angle of
viewing. Software development is non-static and reflects different
perspectives depending on the vantage points of the stakeholders
involved.

These varied perspectives need to be considered in design,
development, and deployment of software, and software assurance
should be an amalgamation of them. The typical perspectives in
software development can be categorized as follows:

i. Organizational Stakeholders

ii. Business vs. Information Technology

iii. Information Security and Risk

iv. Software Development Models

v. Software Development Environment

i. Organizational Stakeholders

The nature of enterprise software development requires
collaboration across various teams made up of personnel with
different roles. Some of these roles include the client, business
analysts, requirements analysts, product managers, project
managers, software engineers, designers, architects, development
managers, developers (coders), testers, and operations personnel.
Though operations personnel are not directly involved in building
the software, they play a vital role in ensuring that the deployed
software is operated securely and remains secure. In some cases,
executive management is also part of the software development
project stakeholder list. While all stakeholders should participate
in building secure software, it’s important to note that executive
management plays a pivotal role in software assurance. The success
of a software assurance program within an organization is directly
proportional to the support from executive management. This top-
down support has an indelible influence on all stakeholders, from
the client to the coder, to develop software securely.

On the surface, it may seem that the officers and executives of
the corporation may have little or nothing to do with software
assurance. However, following various fraud and data breach
incidents, a barrage of regulations and compliance initiatives has
been enforced, including Sarbanes-Oxley (SOX) and the Gramm
Leach Bliley Act (GLBA), to name a few. These regulations hold
executive management responsible for software insecurity.
Individuals in the executive echelons are ultimately responsible for
protecting customer trust and therefore are indirectly influential
in software assurance. In security circles, ROI which conventionally
stood for Return on Investment has, with grim humor, been
replaced with “Risk of Incarceration”.

When developing software securely, all stakeholders should have
an appropriate level of participation. The mantra, “Everyone is
responsible for Software Assurance” is not an overstatement by
any measure.

ii. Business vs. Information Technology

As mentioned earlier, research indicates that one of the main
reasons security vulnerabilities find their way into enterprise
software applications is because the influencers don’t understand
security issues as they pertain to the SDLC. One group of these
influencers is the client/customer (if external) or the business unit
heads (if internal), collectively called the “business” for whom, the
information technology (IT) teams are developing the software.
The business specifies the functional requirements of the software
but seldom specifies the security requirements. Constraints in
scope, schedule, and budget budget, as shown in Figure 1, are often
the reasons why security requirements are left out. If the software
development project’s scope, schedule (time), and budget are
too rigidly defined, then there’s no room left for the team to
maneuver, and failure is inevitable (because “something’s gotta
give”a). Unfortunately what’s typically sacrificed are the elements
of software security.

Figure 1. Scope, Schedule, and Budget
SDLC Iron Triangle

Budget
Schedule

“While there have been many studies detailing
out the cost associated with fixing vulnerabilities in
the production environment versus finding them
further upstream; they often do not include many

of the interim expenses we have found to be
significant in the remediation process. This price
often includes operational work and support to

create patches and mitigating controls while the root
causes are to be addressed in the software.”

Ed Bellis,
CISO and Vice President, Orbitz Worldwide

Scope

3

www.isc2.org

Another reason for leaving out security requirements in software
is that the client or business units may not know how to articulate
the security requirements adequately enough for the IT teams
to incorporate them as they develop the software. Additionally,
in some cases, the IT teams are not trained to ask for security
requirements or translate the functional requirements into security
requirements. It is however imperative that for software to be
secure, client and business requirements should be understood by
the IT teams. Security requirements in addition to the functional
requirements should be requested or generated. IT should
understand the risk and business units should understand security,
at least at a high level. If constraints are imposed on the software
development projects, and necessary risk mitigation measures are
not made available for whatever reasons, the client or business
unit should be made aware of possible vulnerabilities that may
exist in the software being released and be willing to accept or
transfer the risk.

Software developed should not only be business-aware but
also secure from a technical perspective. At the bare minimum,
common technical controls addressing confidentiality (who can
see the information), integrity (who can modify information),
availability (when the information is, or is not, accessible),
authentication (who is making the request), authorization (the
rights and privileges of the requestor), and auditing (historical
evidence), should all be built in. Anything less than bare minimum
security in software, increasing the risks of a breach and the
serious repercussions thereof, is the equivalent of driving a car
without seat belts thus increasing the risk of a fatality in the event
of an accident. b Operationally, the software should run with the
least privilege and stay secure. Fail-safe controls should be built in.
Privileged and administrator-level access should be controlled
and audited.

Both the business and IT teams should share the risk. This will lead
to an increase in software security, and eventually a heightened, and
more mature organization with software assurance.

iii. Information Security & Risk – A Balancing Act

In most cases the business units express and understand
information security in terms of risk, and not technical information
security controls. Meanwhile the technical IT teams express
information security in terms of technical vulnerabilities and
controls, and not in terms of risk. Naturally this difference serves
to widen even further the already-existing communication gap
between the business units and the IT teams.

Information security and risk are two sides of the software
assurance coin and, irrespective of what side the coin lands on
when flipped, both need to be equally and effectively addressed.
An organization’s maturity pertaining to risk, as presented in
the 2007 Computer Security Institute (CSI) conference, will fall
somewhere in the Risk Spectrumc from a chaotic to a predictive
state, as shown in Figure 2.

Figure 2 - Risk Spectrum (Chaotic – Predictive)

In the chaotic state, risk is not managed in a structured manner
and even infantile components of risk management don’t exist.
In the reactive state, risk is managed on an ad-hoc basis, typically
as a result of an incident or discovery of a potential exposure or
vulnerability. In the proactive state, risk is addressed prior to any
incident or discovery of potential exposures or vulnerabilities. In
the predictive state, not only is risk addressed proactively, but

projections of possible exposures in the future are made. Most
organizations today fall somewhere between the chaotic and
reactive states of risk, with some falling between the reactive
and proactive states. But as software assurance gains more
momentum, with user-awareness, education and certifications,
we can expect to see organizations fall more between the
proactive and predictive states of risk.

To address risk means that security in software is part of the
equation, and to address security in software means that risk is
being addressed, accepted, mitigated, or transferred – and never
ignored. Addressing one without the other should never be an
option. Software assurance is about balancing information security
and risk, as shown in Figure 3.

Figure 3. Software Assurance – A Balancing Act

Chaotic Reactive Proactive Predictive

security risk

As software assurance gains more momentum, with
user-awareness, education and certifications,
we can expect to see organizations fall more

between the proactive and predictive states of risk.

4

www.isc2.org

iv. Software Development Models

SDLC is an acronym used for Systems Development Life Cycle
or Software Development Life Cycle. Either way, it’s a process
employing various kinds of expertise and technology, usually
comprised of a phased approach, and sometimes with overlapping
phases.

There are several SDLC models that are prevalent in today’s
enterprise including:

 • The Waterfall model

 • Iterative (Prototyping) model

 • Spiral model

 • Extreme Programming (XP) models of Agile methodology

The traditional, structured Waterfall model is characterized by a
linear, sequential process in which software being developed flows
downward like a waterfall, through phases with fixed specifications.
Royce’s original waterfall model (1970), incorporates the following
phases, to be followed in order:

 1. Requirements specification

 2. Design

 3. Construction (a.k.a. implementation or coding)

 4. Integration

 5. Testing and debugging (a.k.a. verification)

 6. Installation

 7. Maintenance

Once a phase is completed, the software development process
moves on to the next stage, as shown in figure 4. This Waterfall
model is used by large development organizations especially for
large software projects because it brings structure by phases to the
software development process. The National Institute of Standards

and Technology (NIST) Special Publication 800-64 REV 1d, covering
Security Considerations in the Information Systems Development
Life Cycle, breaks the linear Waterfall SDLC model into five generic
phases: initiation, acquisition/development, implementation/assessment,
operations/maintenance, and sunset.

Figure 4.
Waterfall Software Development Model

Today, there are various modified waterfall models that may include
different phases with slight or major variations.

In the Iterative (or prototyping) model, the software development
project is broken into smaller versions and developed incrementally,
as shown in figure 5, as the team learns from one version of the
software to the next. This allows the development effort to be
aligned with the business requirements, uncovering any important
issues early in the project and thereby avoiding disastrous faulty
assumptions. It is also commonly referred to as the prototyping
model in which each version is a prototype of the final release to
manufacturing (RTM) version.

Requirements

Design

Implementation

Verification

Maintenance

Planning

Requirements
Analysis & Design

Implementation

Deployment

Testing
Evaluation

Initial
Planning

Figure 5. Iterative Software Development Model

5

www.isc2.org

The Spiral model, as shown in figure 6, is a software development
model that has elements of both the waterfall model and the
prototyping model, generally for larger projects.

The Agile methodology or Extreme Programming (XP) model
is built on the foundation of iterative development and aims
at minimizing software development project failure rates by
developing the software in rapid iterations (called timeboxes).
It uses feedback that is driven by regular tests and releases of the
evolving software as its primary control mechanism, as shown in
figure 7, instead of planning as in the case of the spiral model. The
Agile methodology or XP model is also referred to as the “people-
centric” model of programming and is more useful for smaller
projects.

Determine Objectives,
Alternatives and Constraints

Evaluate Alternatives,
Identify and Resolve Risk

Plan Developo and Verify
Next Level Product

Requirement
Plan

Risk Analysis

Prototype Prototype Prototype

Risk Analysis

Design

Code

Test

Risk Analysis

Development
Plan

Extreme Programming Project

Architectural
Spike

User Stories

System
Metaphor

Uncertain
Estimates

Confident
Estimates

Release
Planning

Spike

Release
Plan

New User Story
Project Velocity

Test Scenarios

Bugs

Next Iteration

Iteration Latest
Version

Acceptance
Tests

Customer
Approval

Small
Releases

Figure 6. Spiral Model

Figure 7. Extreme Programming Model

6

www.isc2.org

Another very popular and widely used recent Agile development
methodology is the Scrum programming approach. Scrum
approach calls for 30-day release cycles to allow the requirements
to be changed on the fly, if necessary. In Scrum methodology,
the software is kept in a constant state of readiness for release,
as shown in figure 8. The participants in SCRUM have pre-
defined roles, which are of two types dependent on their level of
commitment viz. Pig Roles (Committed, whose bacon is on the
line) and Chicken Roles (Participating). Pig roles include Scrum
Master (Like the project Manager), the Product Owner who
represents the stakeholders and is the voice of the customer and
the Team (the developers). The team size is usually 5-9 for increase
communication. Chicken roles include Users (those who will use
the software being developed), the Stakeholders (the customer or
vendor) and Managers. A prioritized list of high level requirements
is first developed which is known as a Product Backlog. The time
allowed (usually about 30 days) that is allowed for development
of the product backlog is called a Sprint The list of tasks to be
completed during a Sprint is called the Sprint Backlog. A daily
progress for a Sprint is recorded for review in the artifact known
as the Burn Down Chart.

In most cases, the most conducive model for enterprise software
development has been a combination of two or more of these
models. It’s important, however, to realize that no model, or
combination of models, can create inherently secure software.
For software to be securely designed, developed, and deployed,
a minimum set of security tasks needs to be effectively
incorporated in the system development process, and the points
of building security into the SDLC model should be identified.
Figure 9 depicts a minimum set of security tasks that needs to be
an integral part of the generic SDLC through all the phases of a
software development project.

v. Software Development Environment

Gone are the days when software development was contained
within an organization’s perimeter, and even within the borders
of a country. With the rise in access to inexpensive labor, and the
competitive advantages such labor produces, many organizations
jumped on the bandwagon of outsourcing, sending their software
development projects to countries in the emerging/establishing
marketplaces of Eastern Europe, Russia, India, and China. In the
interest of business operations, demarcating network access
devices such as the firewalls and demilitarized zones that
separated the outside from the organizational assets started
to slowly disappear, and the world became one big, global
development shop. In the new, seemingly perimeter-less global
development world, designing, developing, and deploying secure
software is a challenge, to say the least. No longer can software
be hidden behind the defenses of a firewall. To further exacerbate
the vanishing perimeter state of affairs, companies in countries
that were outsourced to are, in turn, outsourcing to countries with
even lower labor costs than themselves. Tracing accountability in
such scenarios can be exceedingly difficult. It is crucial that global
development methodologies and motivations be factored into the
software being developed, and that building security controls in
such a state of affairs not be neglected.

Product
Backlog

Sprint
Backlog Sprint

Working
Increment of
the Software

30
days

24
hours

Figure 8. SCRUM Methodology Figure 9. Security Integral to the

Phase Step# Step

Envisioning 1

2

3

4

5

6

7

Planning

Developing

Release

Stabilization

Identity Threat/Risk Vector(s)

Profile Software

Threat/Risk Modeling

Generate Security & Risk Requirements

Control Check

Handle Threat/Risk

Learn and Educate

Envisioning

7

www.isc2.org

The First Line of Defense – Qualified Personnel
(Aware, Skilled and Certified)

Contrary to popular thinking that education and awareness
are essential elements of a “lessons learned” effort that occur
after software has been deployed/released, the Microsoft Press
book, The Security Development Lifecyclee lists Education and
Awareness as Stage 0 (zero) of an SDLC project. That is to say
that education and awareness precede even the Project Inception
phase of a project. The Security Development Lifecycle attributes
education and awareness (along with executive support) as one
of the two critical success factors in reducing the vulnerabilities
in Microsoft software.

Microsoft hit the “why-do-we-still-release-vulnerable-software”
nail on its head. If the stakeholders in the software development
process are not aware of common security tenets and threats, and
are not skilled to incorporate security controls into the software,
any attempt of software assurance to design, develop, and deploy
software securely is futile. While a secure software development
organization is one that has its personnel aware and educated on
software security, a “mature” software development organization
is one that, in addition to having its personnel made aware and
educated, will also have them qualified by certifying their level of
understanding and demonstrable expertise.

Conclusion: What Next?

With insecure software rampant in today’s business environment,
and in light of mounting regulatory and compliance requirements,
building secure software can no longer be thought of as an
activity on the fringe. Building secure software is a result of all the
stakeholders having the appropriate levels of participation, and a
security mindset in the design, development, and deployment of
the software.

Software assurance has a kaleidoscope of perspectives that
need to be factored into the secure software lifecycle. Software
Assurance stretches from the boardroom to the builder, from the
client/customer to the coder. Effective software assurance includes
non-technical, non-developer roles as well from the business,
management (people, product, and project), and operations.

Everyone is responsible for Software Assurance. Both information
security and risk are to be adequately addressed and software
assurance is about balancing the two. Additionally, software
assurance is about a minimal set of security tasks made integral
to the SDLC, irrespective of the software development model.
Another vantage point is the changing software development
environment. Today’s global environment, characterized by
a vanishing perimeter, with the outsourced company often
outsourcing and development often disconnected, means that
ignoring software assurance will cause potential breaches to be
inevitably realized.

The first line of defense in software assurance is qualified and
educated personnel. These are the individuals who have the
necessary awareness and are trained with the necessary skills
to design, develop, and deploy secure software. Educated and
qualified Certified Secure Software Lifecycle Professionals not
only know how to implement security by writing secure code,
but also how to meet security requirements, and design, test, and
deploy secure software. In addition to understanding security
concepts, they know how to balance security with risk, which is
what software assurance is all about.

The first line of defense in software assurance
is qualified and educated personnel.

8

www.isc2.org

About (ISC)²®

The International Information Systems Security Certification
Consortium, Inc. [(ISC)2®] is the globally recognized Gold Standard
for certifying information security professionals. Founded in
1989, (ISC)² has now certified over 60,000 information security
professionals in more than 130 countries. Based in Palm Harbor,
Florida, USA, with offices in Washington, D.C., London, Hong
Kong and Tokyo, (ISC)2 issues the Certified Information Systems
Security Professional (CISSP®) and related concentrations,
Certified Secure Software Lifecycle Professional (CSSLPCM),
Certification and Accreditation Professional (CAP®), and Systems
Security Certified Practitioner (SSCP®) credentials to those
meeting necessary competency requirements. (ISC)² CISSP and
related concentrations, CAP, and the SSCP certifications are
among the first information technology credentials to meet the
stringent requirements of ANSI/ISO/IEC Standard 17024, a global
benchmark for assessing and certifying personnel. (ISC)² also
offers a continuing professional education program, a portfolio
of education products and services based upon (ISC)2’s CBK®, a
compendium of information security topics, and is responsible for
the (ISC)² Global Information Security Workforce Study. More
information is available at www.isc2.org.

About the Author

Mano Paul, CSSLP, CISSP, AMBCI, MCAD, MCSD, Network+,
ECSA is CEO and President of Express Certifications and
SecuRisk Solutions, companies specializing in professional training,
certification, security products and security consulting. His security
experience includes designing and developing software security
programs from Compliance-to-Coding, application security risk
management, security strategy and management, and conducting
security awareness sessions, training, and other educational
activities. He is currently authoring the Official (ISC)2 Guide to
the CSSLP, is a contributing author for the Information Security
Management Handbook, writes periodically for Certification,
Software Development and Security magazines and has
contributed to several security topics for the Microsoft Solutions
Developer Network. He has been featured in various domestic
and international security conferences and is an invited speaker
and panelist in the CSI (Computer Security Institute), Catalyst
(Burton Group), TRISC (Texas Regional Infrastructure Security
Conference), SC World Congress, and the OWASP (Open Web
Application Security Project) application security conferences.
He can be reached at mano.paul@expresscertifications.com
or mano.paul@securisksolutions.com.

a Dr. Dobb’s Portal – Something’s Gotta Give.
http://www.ddj.com/architect/184414962

b Software Without Seat Belts – Certification Magazine. June 2008.
http://www.certmag.com/read.php?in=3507

c Application Risk Modeling @ CSI 2007.
http://securitymasala.wordpress.com/2007/11/26/application-risk-modeling-csi-2007/

d NIST 800-64 REV 1. Security Considerations in the Information Systems
Development Life Cycle.
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf

e Howard, M. and Lipner, S., Security Development Lifecycle.

